Introduction

• Warmbloods used extensively
 – Sport & pleasure riding
 – Strong need for good conformation & healthy constitution
• Warmblood population large & genetically diverse
 – Low risks of inbreeding if matings well planned
• Exchange of genetic material increasing within Europe

Introduction cont...

• Little known about how European countries manage inherited disorders in breeding plans
• Such information would allow spread of knowledge
 – Improve health & welfare of horses
 – Strengthen trading ties between countries

Aims

1. Review 11 skeletal disorders with known/suspected heritabilities
2. Determine strategies employed by European countries/breeding associations to manage inherited disorders in warmblood sport horse breeds

Review - Genetic Disorders

• Genetic disorders
 – Defects in structure/function caused by negative mutation (Trommershausen-Smith, 1980)
 – Can be purely genetic (single/many genes) or combination of genes & environment
 • Congenital or developmental
• Horse breeding
 – Advantages: well-kept studbooks, many progeny & new molecular techniques
 – Disadvantages: long gestation, single births, changes in ownership & delayed/no symptoms

Review - Skeletal Disorders

• Abnormal bone & cartilage growths
 – Musculoskeletal problems localised in lower limb
 – Culling of Swedish warmbloods (Wallin et al., 2000)
 – Loss of training in Hanoverians (Stock & Distl, 2005)
 – Great variation in how disorders are defined, diagnosed & graded
 • Standardisation desired
• Many skeletal/conformational deviations not lethal but predispose to injuries
 – Varies between breeds & sport types
 – Treatment/correction
Review – Bench knees

- Genetic implications
 - ↑ weight on medial splint bone & interosseous ligaments
 - Associated with racing injuries in TB horses
 - Every 10% ↑ in offset ratio = ↑ risk of swelling & problems in front fetlock (McIlwraith et al., 2001; Anderson et al., 2001)
 - Prevalence of 60% in SW horses (McIlwraith et al., 1996)
 - h^2 not yet estimated

Axial deviation of carpal bones laterally

Review – Calf knees

- Genetic implications
 - Conformation of young TB changes as they mature from back at the knee to slightly over at the knee
 - Strains carpal bone ligaments & ↑ compression on dorsal surface of carpus
 - Highly undesirable in racing & associated with ↑ risk in carpal chip fractures & carpitis (Marks, 2000; Stashak, 2002; Dolvik & Klemetsdal, 1994)
 - High h^2 estimated in Norwegian cold-blooded trotters (0.42) (Dolvik & Klemetsdal, 1999)

Backward deviation of the carpal bones

Review – Weak pasterns

- Genetic implications
 - Predispose to injuries of suspensory ligaments, sesamoid bones & superficial flexor tendons
 - Potential causes of carpal chip fractures
 - Long pasterns ↑ odds of forelimb fractures (McIlwraith et al., 2002)
 - Prevalence of sloping pasterns: 35.2% in Norwegian cold-blooded trotters & low h^2 of 0.09 (Dolvik & Klemetsdal, 1999)

Correct Long sloping pastern

Review – Toe-in/Toe-out

- Genetic implications
 - Neonatal foals usually toed out but as mature, inward rotation
 - Predispose to ringbone & sidebone
 - Toe out horses “wing” (swing hooves in arc) inwards
 - Mild-to-moderate toe in found in 50% elite SW horses (McIlwraith et al., 2001)
 - Toe out: more prevalent in Norwegian cold-blooded trotters (44 fore & 68% hind) & h^2 between 0.04 – 0.11 (Dolvik & Klemetsdal, 1999)

Materials & Methods

November 2008 – online survey sent to 37 breeding organisations in 29 European countries

- Collection & recording of disorders in stallions, young horses, mares & foals
 - When & where?
 - By whom?
 - Summarizing & evaluating records
 - Monitoring of fertility in stallions

- Management of 29 disorders in breeding stallions
 - Disorder screened for?
 - Consideration in breeding?
 - Not considered at all
 - Only when severe
 - Can be compensated with good performance
 - Stallion excluded from breeding

Results & Discussion

- Replies from 11 countries
 - 38% reply rate
- Breeding associations play major roles (stallions & young horses)
- Formulating restrictions
- Record keeping
- Summary & evaluation of records

<table>
<thead>
<tr>
<th>Country</th>
<th>Association</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium</td>
<td>Belgian Warmblood</td>
</tr>
<tr>
<td>Denmark</td>
<td>Danish Warmblood</td>
</tr>
<tr>
<td>Finland</td>
<td>Finnish Warmblood</td>
</tr>
<tr>
<td>France</td>
<td>Les Haras Nationaux</td>
</tr>
<tr>
<td>Ireland</td>
<td>Irish Sport Horse</td>
</tr>
<tr>
<td>Norway</td>
<td>Norwegian Warmblood</td>
</tr>
<tr>
<td>Poland</td>
<td>Polish Horse Breeders</td>
</tr>
<tr>
<td>Scotland</td>
<td>Scottish Sports Horse</td>
</tr>
<tr>
<td>Slovenia</td>
<td>University of Ljubljana, Veterinary Faculty</td>
</tr>
<tr>
<td>Sweden</td>
<td>Swedish Warmblood</td>
</tr>
<tr>
<td>Switzerland</td>
<td>Swiss Sporthorse Breeding</td>
</tr>
</tbody>
</table>
Stallions & young horses

• Stallions — Recordings usually occur at compulsory stallion events
• Young horses — Recordings usually occur at young horse events or prior to sale
• Few countries record disorders during private veterinary visits

<table>
<thead>
<tr>
<th>Country</th>
<th>Stallions</th>
<th>Young horses</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLG</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>DK</td>
<td>Y</td>
<td>Y (Y)</td>
</tr>
<tr>
<td>FIN</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>FR</td>
<td>Y (Y)</td>
<td>N</td>
</tr>
<tr>
<td>IRE</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>NED</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>POL</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>SLO</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>SWE</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

Foals & mares

• Owner/breeder usually responsible for reporting disorders of foals
• Missing information from foals not attending YH events
 — Involve vets in collecting records
• Recording of disorders in mares more difficult
 — Higher numbers & dispersed
 — Selection on mares & stallions may be required for disorders with high h²

<table>
<thead>
<tr>
<th>Country</th>
<th>Foals</th>
<th>Mares</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLG</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>DK</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>FIN</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>FR</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>IRE</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>NED</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>POL</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>SLO</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>SWE</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

Stallion fertility

• Denmark & Norway: semen test
 — Motile & healthy sperm
• Finland, Norway, Sweden: statistics
 — Foaling & pregnancy rate
 — Rates <40-50% considered low
• Important which method used
 — Statistics alone do not represent true fertility of stallion
 — Although good fertility economically important, may not be clearly represented in all breeding plans

<table>
<thead>
<tr>
<th>Country</th>
<th>Stallion fertility</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLG</td>
<td>N</td>
</tr>
<tr>
<td>DK</td>
<td>Y</td>
</tr>
<tr>
<td>FIN</td>
<td>N</td>
</tr>
<tr>
<td>FR</td>
<td>N</td>
</tr>
<tr>
<td>IRE</td>
<td>N</td>
</tr>
<tr>
<td>NED</td>
<td>N</td>
</tr>
<tr>
<td>POL</td>
<td>N</td>
</tr>
<tr>
<td>SLO</td>
<td>Y</td>
</tr>
<tr>
<td>SWE</td>
<td>N</td>
</tr>
</tbody>
</table>

Record evaluation

• 5 countries evaluated records
 — BA & Veterinary Faculty (VF) of University
• 4 of the countries published information
 — Not specified what format information was published in
• Collection & evaluation of records
 — Use available information on disorders to assist BAs and breeders in selecting stallions
 — Option to create central database of disorders at national level

Breeding stallions

• Screening of breeding stallions
 — Skeletal & joint the most (e.g. OC/OCD, bone spavin, over-/underbite & conformational deviations)
 • May reflect lameness as major problem in warmblood sport horse
 — Muscular the least (e.g. Rhabdomyolysis)
 • May be group of emerging disorders
 • Polysaccharide Storage Myopathy (PSSM) correlated with cases of exertional rhabdomyolysis
 • PSSM found in 50% of muscle biopsies from warmblood horses with neuromuscular symptoms
 • h² of exertional rhabdomyolysis estimated at 0.4
 — In TB horses with an autosomal dominant inheritance suggested

• Consideration in breeding stallions
 — Great variation between countries to what level disorders were considered
 — Degenerative joint, reproductive & respiratory disorders mostly resulted in exclusion
 — Conformational deviations = all considered to the same level within countries
 • Race horse studies show some deviations are more detrimental than others
 • Research which conformation is mostly likely to lead to injury, depending on use
Summary

• Many conformational deviations not lethal but do predispose to injuries
 – Varies between breeds and sport types
 – Treatment/correction possible but ultimately should they breed?
 – Variation in how disorders are defined, diagnosed & graded
• Breeding associations play major roles in selection, management & recording
 – Vets & researchers smaller roles
• Recording of disorders
 – Mostly at young horse/stallion events thus not representative of whole population

Summary cont...

• Screening in breeding stallions
 – Skeletal & joint the most
 – Muscular the least
• Consideration in breeding stallions
 – Great variation between countries
 – Degenerative joint, reproductive & respiratory = exclusion
 – Conformational deviations = consensus within countries
• Fertility of stallions
 – Does not seem to be of high priority in most breeding plans

Conclusions

• Consensus desired within & between countries
 – Diagnose & grade disorders in standardised way
 – Research into relationship between conformation & performance of riding horses
• Inclusion of all interested parties in recording, collection & evaluation of disorder data
 – Obtain frequencies & heritabilities
• Information collected
 – Evaluated within breeding associations for stallion approval
 – Published, allowing breeders to more efficiently match stallions to mares

Acknowledgments

• The participating countries!
• Supervisors: Lina Jönsson, Louise Lindberg, Bart Ducro & Jan Philipsson
• Emma Thorén-Hellsten, Birgitta Malmfors, Kathrin-Friederike Stock & Olga Boucher
• EM-ABG for funding

Thank you!